Building Energy Efficiency Has Stalled — Here’s How to Spark Progress

Building Energy Efficiency Has Stalled — Here’s How to Spark Progress

September 6, 2017
|
0 Comments
|

This article originally appeared on Sustainable Brands

by Bert Valdman

U.S. commercial buildings could cut energy use by 29 percent on average by taking full advantage of controls technology and implementing a few other base energy-efficiency measures, according to a new study from the Pacific Northwest National Laboratory. Commercial buildings account for 20 percent of U.S. energy use and produce 50 percent or more of a city’s greenhouse gas emissions (75 percent in New York). If we want “smart cities” to be more than just an catchy phrase, this is an opportunity we must seize.

The trouble is, the opportunity has been sitting there for a very long time. The Clinton Foundation announced a multibillion-dollar initiative to cut urban energy in 2007, on the same day the National Academy of Sciences, along with the scientific academies of 12 other countries, called on world leaders to address global warming by increasing energy efficiency. And yet, building energy use has risen over the past five years in even the most efficiency-conscious cities, based on an analysis of American Council for an Energy-Efficient Economy data.

Accountability moves the needle

Singapore has been shaping a policy that builds in accountability for meeting carefully crafted performance targets, and already is seeing significant success. Singapore started with a standard for cooling systems based on metrics for efficiency rather than gross energy use. This puts the responsibility on the designers: A cooling system can meet an efficiency-based performance standard even if building operators overcool. If the building doesn’t meet that standard, you know the problem is the system, and if it does but still uses too much energy, you can focus on operational changes.

Tying system output to real needs

Real building efficiency also requires taking a fresh look at building infrastructure. Components that use the most energy, such as lighting and HVAC systems, often are designed, configured and used based on the habits of decades past, even if they incorporate the latest technology.

The biggest challenge with HVAC systems — which account for nearly 50 percent of the typical commercial building’s energy use — is that they are more highly engineered and complex than they need to be. They’re also sized to meet maximum peak energy needs, not for efficiency. In the retrofit market, the best we can do is improve poorly designed systems. That’s well worth doing in terms of efficiency results, as the Singapore example shows.

Read full article here

Share on FacebookTweet about this on TwitterShare on LinkedInShare on Google+Email this to someone